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NMR 3D Di�ractive Imaging technique
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Abstract|A new approach to MR angiography, the NMR
di�ractive imaging technique, has been investigated. The

expression for NMR signals obtained in the NMR di�rac-
tive imaging technique is similar to the equation for Fres-
nel di�raction in light waves or sound waves. Therefore,

it is possible to reconstruct three-dimensional images by
converting the NMR signal to hologram and using an op-

tical image processing system from the data scanned two-
dimensionally. Moreover, an image focusing on optional
plane in the depth direction can be reconstructed numer-

ically from the data by changing an distance parameter in
the reconstruction step. Experiments were performed using
an ultra-low-�eld MRI scanner to acquire two-dimensional

data in the proposed technique. Even though blurred image
outside the focal plane is superimposed on the image in the

focal plane, the three-dimensional distribution of the object
can be recognized. This technique is expected to be useful
in MR fast angiography.

Keywords|MRI, angiography, three-dimensional imaging,
holography.

I. Introduction

Lately, a brain scanning examination, obtaining the im-
age of angiography in the brain to discover any existence
of abnormalities, has been utilized more frequently. Imag-
ing angiography using an MRI scanner, however, requires
considerable amount of time to collect three-dimensional
data. Therefore, shortening the time for imaging is be-
lieved to relieve the burden of a study subject, followed
by improving the throughput because of increases in the
number of subjects to be checked per hour. With poten-
tial possibilities, shortening the time for imaging seems to
produce great e�ectiveness in the future.
In aiming to shorten the examination time, we studied

utilization of the NMR Fresnel di�ractive imaging tech-
nique, which enables us to obtain the images containing
depth information by using the collected two-dimensional
data. Although NMR phenomena is not a wave motion
itself, it can take the similar form to the description of
the wavefront in the Fresnel di�ractive region by using
non-linear �eld gradients. We have been studying the
NMR imaging technique in which NMR signal has the form
of Fresnel integral equation of two-dimensional object by
scanning a nonlinear quadratic �led gradient over the imag-
ing region[1], [2].
By developing the Fresnel transform imaging technique

to three-dimensional one, it will be possible to obtain the
NMR images containing depth information of the object by
the signal scanned two-dimensionally as the hologram re-
produces the three-dimensional images in the optical holog-
raphy.
Di�ractive tomography is a technique for obtaining sub-

jective two-dimensional and three-dimensional distribu-

tions based on the measurement of �eld waves. This tomog-
raphy has been applied to di�ractive �elds such as optical
microscopes[3], [4] and techniques with supersonic waves[5],
as suggested by Wolf concerning lighting problems[6].

In our study, aiming principally to image vascular tracts,
we designed a coil system, which can obtain the same signal
equations as those of three-dimensional Fresnel di�ractive
waves, and then experimented on its use.

According to the technique used, we can obtain the
three-dimensional distribution of the subject in the time
of two-dimensional acquisition, and we might be able to
judge any existence of abnormalities rapidly.

II. NMR signal in the Fresnel diffractive

imaging technique

Holography is a technique proposed by D.Gabor to
record an object light wave scattered from the object on
photosensitive materials by superimposing a reference light
on the object light wave. Although wavefronts in two-
dimensional distribution of the object are recorded, illu-
minating light wave on the hologram can reproduce the
scattered wavefront from the object which can reconstruct
natural three-dimensional images.

A. Wavefront equation in the Fresnel di�raction region

The di�ractive wavefront u(xi; yi)jz=zi
scattered from

the object g(x0; y0; z0) on the screen located at z = zi in
the Fresnel region is written as Eq.(1) [8]

u(xi; yi)jz=zi
=

1

j�(zi � z0)
exp fjk(zi � z0)g

�
Z Z 1Z

�1

g(x0;y0;z0) exp

�
jk

(xi�x0)2+(yi�y0)2
2(zi�z0)

�
dx0dy0dz0;(1)

where � is the wavelength of light source, k is an wave num-
ber and zi represents the distance from the center of coor-
dinates (x0; y0; z0) to the screen. Equation(1) is rewritten
as follows by convolution equation :

u(xi; yi)jz=zi
= g(xi; yi; zi) � f(xi; yi; zi); (2)

where f(xi; yi; zi) is written as follows:

f(xi; yi; zi) =
1

j�zi
exp

�
jk
�
zi + (x2i + y2i )=2zi

�	
: (3)

The input light distribution, g(x0; y0; z0), has the equation
convoluted by quadratic phase term f(xi; yi; zi) which is
the function of zi. The function of f(xi; yi; zi) is called
\Point Spread Function".
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B. NMR signal equation

In this section, we examine possibilities of an NMR sig-
nal equation to obtain the similar equations as those of
the three-dimensional di�racted wavefront of Eq.(1). Since
producing the same form signals as those of Eq.(1) makes
magnetic �eld designing quite di�cult, we planned to �nd
ways to make magnetic �elds produced as easy as possi-
ble and approximate the function k=2(zi� z0) of quadratic
phase term in Eq.(1) into a �rst order equation as z coordi-
nate. Based on the condition above, we use a �eld gradient,
whose �eld intensity changes in a quadratic form on x� y
plane, and whose coe�cient of the quadratic �eld gradient
varies in the z direction by �, as shown in Eq.(4)

�B = b(1 + �z)
�
(x0 � x)2 + (y0 � y)2

	
; (4)

where b is a coe�cient of a quadratic �eld gradient at z = 0
and coordinates (x0; y0) are the center of this quadratic �eld
gradient which can be set to optional places by the �eld
given from outside. Therefore, Eq.(5) is the target equation
of NMR signals, which can be obtained by scanning this
quadratic �eld gradient on xy plane

v(x0; y0) = P

Z Z 1Z
�1

�(x; y; z)

� exp��j
b�(1+�z)
�
(x0�x)2+(y0�y)2

�	
dxdydz; (5)

where �(x; y) represents the spin density distribution in
the subject, 
 is the magnetogyric ratio, � represents its
impressed time, and P is a constant.
In order to obtain the signal like the form of Eq.(5), the

coe�cient of the �eld must be varied in the z direction
not only the scanning �eld but also the �eld applied in the
time reading direction. Therefore, magnetic �eld equations
should all be varied into Eqs.(6) to (9),

(a)quadratic �eld: �b(x; y; z)=b(1+�z)
�
x2+y2

�
; (6)

(b)scanning �eld: �b0x(z)=
p
1 + �zb0x; (7)

(c)sweeping �eld: �b0y(z)=(1 + �z) b0y; ; (8)

(d)�eld gradient: �Gyz(y; z)=(1 + �z)Gyy: (9)

Figure1 shows the pulse sequence for the NMR di�rac-
tive imaging technique. After excitation of spins in the

 Gyz
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Fig. 1. Pulse sequence for NMR Fresnel di�ractive imaging tech-
nique.

subject, a quadratic �eld gradient(a) and scanning �eld(b)
are applied in the phase encoding direction only for �
of time. Scanning �eld is used to scan the center of
a quadratic �eld, so when the amount of scanning is
set to be x0, the quadratic �eld after scanning is �b =
b (1 + �z)

�
(x0 � x)2 + y2

	
. Next, the sweeping �eld(c)

and the �eld gradient(d) are applied at the same time. The
echo signal obtained by the method above can be written
as Eq.(10) by setting the origin of the time at the center of
the echo signal

v(t; y0)=

Z Z 1Z
�1

�(x; y; z) exp
��j
b� (1+�z)

�
(x0�x)2+y2

�	

� exp
�
�j
 (1+�z)Gyt+
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�
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= exp
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2
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2
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(
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"
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�
y+

Gyt

2b�

�2
#)

� exp
�
j
t2 (1 + �z)

�
Gy

2

4b�
� b0y

2

��
dxdydz; (10)

When the parameters are set to Eq.(11), and variables are
also transformed, Eq.(10) can be rewritten as the following
equation (12), and the target equation of Eq.(5) is obtained

Gy
2

4b�
=

b0y
2
; y0 = �Gyt

2b�
; (11)

v(x0; y0)=P

Z Z 1Z
�1

�(x;y;z)

� exp��j
b� (1+�z)
�
(x0�x)2+(y0�y)2

�	
dxdydz:(12)

Where P is set as P = exp
��j
b0y=2t02	 and


b� (1 + �z), equivalent to a distance parameter, became
the same form as written in Eq.(5). There are two methods
for reconstructing images from Fresnel integral equation.
One is a technique using the inverse Fourier transforma-
tion once after multiplying the quadratic phase term. The
other method solve the convolution integral by the inverse
�ltering[1]. In this paper, we will discuss the method recon-
structing images by the inverse �ltering technique, in which
the pixel width is not changed by the imaging parameters
depending on the focal plane.
Let Fxy be the Fourier transformation with respect to x,

y, and it is applied to Eq.(12), then Eq.(13) can be obtained
as follows:

Fxy fv(x0; y)g=P

1Z
�1

exp
�
�j �

2

� �


b� (1 + �z)

�R(kx; ky; z) exp
�
j

kx
2 + ky

2

4
b�(1 + �z)

�
dz; (13)
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gradient coil

scanning coilb0y

Gyz
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Fig. 2. Outlook of the coil system for NMR Fresnel di�ractive imag-
ing technique.

where R(kx; ky; z) denotes the Fourier transform of
�(x; y; z) with respect to x and y coordinates. By arranging
Eq.(13), Eq.(14) is obtained

Fxy fv(x0; y0)g=Pexp
�
�j �

2

� �


b�

1Z
�1

1

1 + �z

�R(kx; ky; z) exp
�
j

kx
2 + ky

2

4
b� (1 + �z)

�
dz: (14)

Image focused on z0 plane is obtained by multiplying the
inverse function of modulation transfer function on z0 plane
to Eq.(14) using the distance parameter of 
b� (1+�z0), and
taking the inverse Fourier transform of it. Let �(x0; y0; z0)0

denote the image focused on z0 plane which can be obtained
by the following equation:

�(x0; y0; z0)0=
1

P
exp

�
j
�

2

�
F�1xy

"
Fxy[v (x

0; y0)]

� exp
�
�j kx

2 + ky
2

4
b�(1 + �z0)

�#
(15)

=
1

P
exp

�
j
�

2

�
F�1xy

" 1Z
�1

1

1 + �z
�R(kx;ky;z)

� exp
�
j
�(z � z0)(kx

2 + ky
2)

4
b�(1 + �z)(1 + �z0)

�
dz

#
: (16)

From Eq.(16), we can obtain the image focused on optional
plane by giving the focal plane coordinate z0 in the distance
parameter of 
b� (1+�z) in the reconstruction procedure.

III. Experiments

To support this imaging technique, a coil system which
generate the �elds written by Eqs.(6) to (9) was designed
and fabricated. Fig.2 show the outlook of the coil system.
Experiments were performed using an ultra-low-�eld MRI
scanner which generates the static magnetic �eld of B0 =
0.0183 T by the solenoid coil (resonant frequency f0=779
kHz). The parameters of experiments are as follows : 
b�=
1.49 rad=cm2, the repetition time for the pulse sequence
TR =300msec, �x0=�y0 are 0.2 cm, and the data matrix
of the NMR signal is set to 64 � 64.

(a) (b) (c) (d)

z= 9mm z= 3mm z= -3mm z= -9mm

Fig. 3. Reconstructed images of 4-pole phantom focused on di�erent
depth by changing the imaging parameter.

IV. Image Reconstruction

A. Adjusting focal plane experiments

We conducted the experiment in order to examine
whether images at optional focal planes can be obtained
from two-dimensional scanned signals by parameters used
in the numerical reconstruction procedure. Fig.3(a) shows
the results of experiments using the phantom, having four
water poles placed in the same intervals in the x direction
and the z direction. As the distance parameters used in nu-
merical reconstruction are followed by 
b� (1 + �z), com-
puterized images was reconstructed by being varied from
1.44 to 1.56 rad=cm2 in 0.44 steps, as shown in Fig.3. Fig.3
shows the images focusing on a water pole located in the
place, z = 9 mm, and (b) to (d) show the reconstructed
images focusing on each water pole after focal plane moves
by �0.06cm. The results show that the water pole on focal
plane is imaged most clearly. On the other hand image
of water pole become obscure as a focal plane is moving
gradually farther from the plane where water pole is lo-
cated. The results of this experiment indicates that, even
in collecting two-dimensional scanned signal, NMR signal
in the NMR di�ractive imaging technique can reconstruct
images focusing on optional plane according to the choice
of distance parameters depending on z coordinate.

B. Imaging experiments with 3D tube

We performed the experiment using a vascular tract
model. Phantom shown in Fig.4 was used for this experi-
ment after being devised with a 4 mm diameter tube includ-
ing water. Numerically reconstructed images obtained by
adjusting the focal plane z0 are shown in Fig.4(a)-(d) whose
focal plane is shifted every �8mm from a point z = 12
mm. Fig.4(a) and (b) show the images each focusing on
the tubes on the right and left sides of a small-sized loop.
Fig.4(c) and (d) show the images each focusing on the tubes
on the right and left sides of a large-sized loop. Although
these images include unnecessary image components out of
focus, the three-dimensional distributions of phantom are
understood by three-dimensional information.
Using a proposed di�ractive imaging technique, there are

some cases where images are emphasized by the superimpo-
sition of blurred image components outside the focal plane
on the focal plane one. The area indicated as A in Fig.4(d)
is the example of that obscure image. In this case, it may
not be possible to distinguish normal parts from diseased
parts. In order to reduce this interference problem, we had
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(a) (b) (c)

(d)

z=  12mm z= 4mm z= -4mm

z= -12mm

A

AA
AA
AA
AA

(d)

3D tube phantom used in the experiments

Fig. 4. Diagonal view images of 3D tube phantom focused on di�erent
depth by changing the imaging parameter.

performed the experiments for imaging from di�erent an-
gles to change the way of interference. Fig.5(a)-(d) show
the results of an imaging experience by revolved phantom.
Since the way of interference is changed, it ease the judge-
ment whether parts with high intensity is generated by
interference or by other reasons.

V. Discussion

In the experiment, we could obtain images focusing on an
optional depth by the signals scanned two-dimensionally.
We can recognize that an object is located around focal
plane by the fact that the image is clearly reconstructed.
However, there are some cases where we have found it dif-
�cult to judge this clearly. In this case, we can recognize
three-dimensional distributions of an object more easily,
when we can observe images as animation by continuously
displaying the images focused on each z coordinate. This
is considered to be because we can spatially recognize the
obscure amount of images located in the front and rear
parts of focuses by observing continuous images in the z
direction.

However, given the considerable shortage of information
about the subject on the use of this technique, we will
have to confront problems of judging whether an observed
place is abnormal because the image intensity on the plane
will become greater when vascular tracts are crossing in
the depth direction. In this case, although it doubles the
amount of imaging time, we might solve the problem by
observing the subject from di�erent angles. There are two
ways to move a visual point: one is to move an object and
the other is to create an equivalent e�ect as moving a visual
point by adding magnetic �elds in the imaging experiment.
We consider that the latter technique - moving visual points
by �elds - is the more practical.

Since the description of the NMR signal has the similar
form to the equation of the wavefront in the Fresnel region,

(a) (b) (c) (d)

z= 12mm z= 4mm z= -4mm z= -12mm

Fig. 5. Front view images of 3D tube phantom focused on di�erent
depth by changing the imaging parameter.

a hologram which can produce image in the coherent op-
tical system is produced easily by transforming the signal
distribution into the gray-scale pattern [9]. In principle, it
is possible to reconstruct natural three-dimensional images
using the holographic technique. We will investigate the
holographic reconstruction in the next step.

VI. Conclusion

A new approach to MR angiography, the NMR Fresnel
di�ractive imaging technique, which can obtain the signal
similar to the equation of the Fresnel di�ractive images, is
proposed. To support this imaging technique, a coil sys-
tem composed of six coils was designed and imaging exper-
iments using the water tube model were performed. The
results shows that images focusing on optional plane in the
depth direction can be reconstructed from data scanned
two-dimensionally. Even though blurred images outside
the focal plane are superimposed on the image in the focal
plane, the three-dimensional distribution of the object can
be recognized by moving the focal plane in the depth di-
rection. To attain supplemental information for the object,
acquiring images from di�erent angles is helpful for recog-
nizing the spatial distribution of the object more precisely.
The proposed imaging technique is expected to be useful
in MR fast angiography.
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